Data Booklet for Chemistry (Advanced Level) 2019 for H1-3

1 Important values, constants and standards

molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
the Avogadro constant	$L = 6.02 \times 10^{23} \text{mol}^{-1}$
the Planck constant	$h = 6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$
speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{m \ s^{-1}}$
rest mass of proton, ¹ ₁ H	$m_{\rm P} = 1.67 \times 10^{-27} \mathrm{kg}$
rest mass of neutron, 1_0	$m_{\rm h} = 1.67 \times 10^{-27} \rm kg$
rest mass of electron, ⁰ e	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
electronic charge	$e = -1.60 \times 10^{-19} \text{C}$
molar volume of gas	$V_{\rm m} = 22.7 \ {\rm dm^3 \ mol^{-1}} \ {\rm at \ s.t.p.}$
	$V_{\rm m} = 24 \ {\rm dm^3 \ mol^{-1}} \ {\rm at \ r.t.p.}$
	(where s.t.p. is expressed as 10 ⁵ Pa [1 bar] and 273 K [0 °C],
	r.t.p. is expressed as 101325 Pa [1 atm] and 293 K [20 °C])
ionic product of water	$K_{\rm W} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K [25 ^{\circ}C])$
specific heat capacity of water	= $4.18 \text{ kJ kg}^{-1} \text{ K}^{-1} $ (= $4.18 \text{ J g}^{-1} \text{ K}^{-1}$)
specific fleat capacity of water	= 4.10 kg K (= 4.10 J g K)

2 Ionisation energies (1st, 2nd, 3rd and 4th) of selected elements, in kJ mol⁻¹

	Proton Number	First	Second	Third	Fourth
Н	1	1310	_	-	_
Не	2	2370	5250	-	-
Li	3	519	7300	11800	-
Ве	4	900	1760	14800	21000
В	5	799	2420	3660	25000
С	6	1090	2350	4610	6220
N	7	1400	2860	4590	7480
0	8	1310	3390	5320	7450
F	9	1680	3370	6040	8410
Ne	10	2080	3950	6150	9290
Na	11	494	4560	6940	9540
Mg	12	736	1450	7740	10500
Al	13	577	1820	2740	11600
Si	14	786	1580	3230	4360
Р	15	1060	1900	2920	4960
S	16	1000	2260	3390	4540
Cl	17	1260	2300	3850	5150
Ar	18	1520	2660	3950	5770
K	19	418	3070	4600	5860
Ca	20	590	1150	4940	6480

	Proton Number	First	Second	Third	Fourth
Sc	21	632	1240	2390	7110
Ti	22	661	1310	2720	4170
V	23	648	1370	2870	4600
Cr	24	653	1590	2990	4770
Mn	25	716	1510	3250	5190
Fe	26	762	1560	2960	5400
Со	27	757	1640	3230	5100
Ni	28	736	1750	3390	5400
Cu	29	745	1960	3350	5690
Zn	30	908	1730	3828	5980
Ga	31	577	1980	2960	6190
Ge	32	762	1540	3300	4390
Br	35	1140	2080	3460	4850
Rb	37	403	2632	3900	5080
Sr	38	548	1060	4120	5440
Ag	47	731	2074	3361	-
Sn	50	707	1410	2940	3930
I	53	1010	1840	3200	4030
Cs	55	376	2420	3300	_
Ва	56	502	966	3390	_
Pb	82	716	1450	3080	4080

3(a) Bond energies in diatomic molecules (these are exact values)

Bond	Energy/kJ mol ⁻¹	Bond	Energy/kJ mol ⁻¹
H-H	436	H-F	562
D-D	442	H-Cl	431
N≡N	944	H-Br	366
0=0	496	H-I	299
F-F	158	C≡O	1077
CI-CI	244		
Br-Br	193		

3(b) Bond energies in polyatomic molecules (these are average values)

Bond	Energy/kJ mol ⁻¹	Bond	Energy/kJ mol ⁻¹	Bond	Energy/kJ mol ⁻¹	Bond	Energy/kJ mol ⁻¹
C-C	350	S-S	264	C-O	360	Si-O in SiO ₂ (g)	640
C=C	610	C-H	410	C=O	740	P-H	320
C≡C	840	C-F	485	C=O in CO ₂	805	P-Cl	330
C∺C (benzene)	520	C-Cl	340	N-H	390	P-O	340
N-N	160	C-Br	280	N-Cl	310	P=O	540
N=N	410	C-I	240	О-Н	460	S-H	347
0-0	150	C-N	305	Si-Cl	359	S-Cl	250
Si-Si	222	C=N	610	Si-H	320	S-O	360
P-P	200	C≡N	890	Si-O in SiO ₂ (s)	460	S=O	500

4 Standard electrode potential and redox potentials, E^\ominus at 298 K (25 °C) 4(a) E^\ominus in alphabetical order

Electro			E [⊕] / V
Ag⁺ + e⁻	=	Ag	+0.80
A1 ³⁺ + 3e ⁻	=	Al	-1.66
Ba ²⁺ + 2e ⁻	=	Ва	-2.90
Br ₂ + 2e ⁻	=	2Br ⁻	+1.07
Ca ²⁺ + 2e ⁻	=	Ca	-2.87
C l ₂ + 2e ⁻	=	2C <i>l</i> -	+1.36
2HOC1+2H++2e-	=	C1 ₂ + 2H ₂ O	+1.64
C1O" + H2O + 2e"	=	C1-+2OH-	+0.81
Co ²⁺ + 2e ⁻	=	Со	-0.28
Co ³⁺ + e ⁻	=	Co ²⁺	+1.89
[Co(NH ₃) ₆] ²⁺ + 2e ⁻	=	Co + 6NH ₃	-0.43
Cr ²⁺ + 2e ⁻	=	Cr	-0.91
Cr ³⁺ + 3e ⁻	=	Cr	-0.74
Cr ³⁺ + e ⁻	=	Cr ²⁺	-0.41
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+1.33
Cu ⁺ + e [−]	=	Cu	+0.52
Cu ²⁺ + 2e ⁻	=	Cu	+0.34
Cu ²⁺ + e ⁻	=	Cu⁺	+0.15
[Cu(NH ₃) ₄] ²⁺ + 2e ⁻	=	Cu + 4NH ₃	-0.05
F ₂ + 2e ⁻	=	2F-	+2.87
Fe ²⁺ + 2e ⁻	=	Fe	-0.44
Fe ³⁺ + 3e ⁻	=	Fe	-0.04

de re	action	E [⊕] / V
=	Fe ²⁺	+0.77
=	$[Fe(CN)_6]^{4-}$	+0.36
=	Fe(OH) ₂ + OH ⁻	-0.56
=	H ₂	0.00
=	2I-	+0.54
=	К	-2.92
+	Li	-3.04
=	Mg	-2.38
=	Mn	-1.18
=	Mn ²⁺	+1.54
=	Mn ²⁺ + 2H ₂ O	+1.23
=	MnO ₄ ²⁻	+0.56
=	MnO ₂ + 2H ₂ O	+1.67
=	Mn ²⁺ + 4H ₂ O	+1.52
=	NO ₂ + H ₂ O	+0.81
=	HNO ₂ + H ₂ O	+0.94
=	NH ₄ ⁺ + 3H ₂ O	+0.87
=	Na	-2.71
=	Ni	-0.25
=	Ni + 6NH ₃	-0.51
=	2H ₂ O	+1.77
=	30H ⁻	+0.88
=	2H ₂ O	+1.23
=	40H ⁻	+0.40
=	H ₂ O ₂	+0.68
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 ⇒ 30H⁻ ⇒ 2H₂O ⇒ 40H⁻

Electrode reaction	E [⊕] /V
$O_2 + H_2O + 2e^- \rightleftharpoons HO_2^- + OH^-$	-0.08
$2H_2O + 2e^- \rightleftharpoons H_2 + 2OH^-$	-0.83
Pb ²⁺ + 2e [−]	-0.13
$Pb^{4+} + 2e^{-} \rightleftharpoons Pb^{2+}$	+1.69
$PbO_2 + 4H^+ + 2e^- \rightleftharpoons Pb^{2+} + 2H_2O$	+1.47
$SO_4^{2-} + 4H^+ + 2e^- \rightleftharpoons SO_2 + 2H_2O$	+0.17
$S_2O_8^{2-} + 2e^- \rightleftharpoons 2SO_4^{2-}$	+2.01
$S_4O_6^{2-} + 2e^- \rightleftharpoons 2S_2O_3^{2-}$	+0.09
Sn ²⁺ + 2e [−]	-0.14
$Sn^{4+} + 2e^- \rightleftharpoons Sn^{2+}$	+0.15
V ²⁺ + 2e [−]	-1.20
$V^{3+} + e^- \rightleftharpoons V^{2+}$	-0.26
$VO^{2+} + 2H^{+} + e^{-} \rightleftharpoons V^{3+} + H_2O$	+0.34
$VO_2^* + 2H^* + e^- \rightleftharpoons VO^{2+} + H_2O$	+1.00
$VO_3^- + 4H^+ + e^- \rightleftharpoons VO^{2+} + 2H_2O$	+1.00
Zn ²⁺ + 2e [−]	-0.76

All ionic states refer to aqueous ions but other state symbols have been omitted.

4(b) E_⊕ in decreasing order of oxidising power

4(b) <i>E</i> ⊕ in decreasing	ng c	order of oxidising	power
Electro	de re	action	E [⊕] / V
F ₂ + 2e ⁻	=	2F ⁻	+2.87
S ₂ O ₈ ²⁻ + 2e ⁻	=	2SO ₄ ²⁻	+2.01
H ₂ O ₂ + 2H ⁺ + 2e ⁻	=	2H ₂ O	+1.77
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	=	Mn ²⁺ + 4H ₂ O	+1.52
PbO ₂ + 4H ⁺ + 2e ⁻	=	Pb ²⁺ + 2H ₂ O	+1.47
Cl ₂ + 2e ⁻	=	2C <i>l</i> ⁻	+1.36
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+1.33
O ₂ + 4H ⁺ + 4e ⁻	=	2H ₂ O	+1.23
Br ₂ + 2e ⁻	=	2Br ⁻	+1.07
NO ₃ ⁻ + 10H ⁺ + 8e ⁻	=	NH ₄ ⁺ + 3H ₂ O	+0.87
C1O" + H2O + 2e"	=	C1 - + 2OH-	+0.81
NO ₃ ⁻ + 2H ⁺ + e ⁻	=	NO ₂ + H ₂ O	+0.81
Ag⁺ + e⁻	=	Ag	+0.80
Fe ³⁺ + e ⁻	=	Fe ²⁺	+0.77
I ₂ + 2e ⁻	=	21	+0.54
O ₂ + 2H ₂ O + 4e ⁻	=	40H ⁻	+0.40
Cu ²⁺ + 2e ⁻	=	Cu	+0.34
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	SO ₂ + 2H ₂ O	+0.17
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+0.15
S ₄ O ₆ ²⁻ + 2e ⁻	=	2S ₂ O ₃ ²⁻	+0.09
Fe ²⁺ + 2e ⁻	=	Fe	-0.44
Zn ²⁺ + 2e ⁻	=	Zn	-0.76
2H ₂ O + 2e ⁻	=	H ₂ + 20H ⁻	-0.83
V ²⁺ + 2e ⁻	=	V	-1.20
Mg ²⁺ + 2e ⁻	=	Mg	-2.38
Ca ²⁺ + 2e ⁻	=	Ca	-2.87
K* + e-	=	К	-2.92
I			

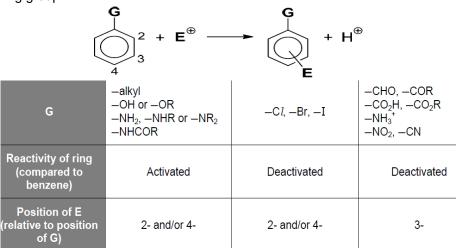
5 Atomic and ionic radii

Atomic an	<u>id ioni</u>	c radii				
) Period 1	ato	mic/nm		ioni	c/nm	
single covalent	Н	0.037			H⁻	0.208
van der Waals	He	0.140				
) Period 2						
metallic	Li	0.152	Li ⁺	0.060		
	Ве	0.112	Be ²⁺	0.031		
			24			
single covalent	В	0.080	B ³⁺	0.020		
	С	0.077	C ⁴⁺	0.015	C⁴-	0.26
	N	0.074			N ³⁻	0.17
	0	0.073			O ²⁻	0.14
	F	0.072			F ⁻	0.13
van der Waals	Ne	0.160				
) Period 3	IVE	0.100				
metallic	Na	0.186	Na⁺	0.095		
	Mg	0.160	Mg ²⁺	0.065		
	Al	0.143	Al ³⁺	0.050		
single covalent	Si	0.117	Si ⁴⁺	0.041		
	Р	0.110			P ³⁻	0.21
	S	0.104			S ²⁻	0.18
	Cl	0.099			Cl-	0.18
van der Waals	Ar	0.190				
Group 2						
metallic	Ве	0.112	Be ²⁺	0.031		
	Mg	0.160	Mg ²⁺	0.065		
	Ca	0.197	Ca ²⁺	0.099		
	Sr	0.215	Sr ²⁺	0.113		
	Ва	0.217	Ba ²⁺	0.135		
	Ra	0.220	Ra ²⁺	0.140		

(e) Group 14	ato	mic/nm		ionio	c/nm	
single covalent	С	0.077				
	Si	0.117	Si ⁴⁺	0.041		
	Ge	0.122	Ge ²⁺	0.093		
metallic	Sn	0.162	Sn ²⁺	0.112		
	Pb	0.175	Pb ²⁺	0.120		
(f) Group 17						
single covalent	F	0.072			F ⁻	0.136
	Cl	0.099			Cl-	0.181
	Br	0.114			Br ⁻	0.195
	I	0.133			ľ	0.216
	At	0.140				
(g) First row d block e	lements					
metallic	Sc	0.164			Sc ³⁺	0.075
	Ti	0.146	Ti ²⁺	0.086	Ti ³⁺	0.067
	V	0.135	V ²⁺	0.079	V ³⁺	0.064
	Cr	0.129	Cr ²⁺	0.073	Cr ³⁺	0.062
	Mn	0.132	Mn ²⁺	0.083	Mn ³⁺	0.058
	Fe	0.126	Fe ²⁺	0.061	Fe ³⁺	0.055
	Со	0.125	Co ²⁺	0.065	Co ³⁺	0.055
	Ni	0.124	Ni ²⁺	0.069	Ni ³⁺	0.056
	Cu	0.128	Cu ²⁺	0.073		
	Zn	0.135	Zn ²⁺	0.074		

6 Typical proton (1 H) chemical shift values (δ) relative to TMS =0

Type of proton	Environment of proton	Example structures	Chemical Shift range (δ)
	alkane	-CH ₃ , -CH ₂ -, CH-	0.9–1.7
	alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, CH-C=O	2.2–3.0
	alkyl next to aromatic ring	CH ₃ -Ar, -CH ₂ -Ar, CH-Ar	2.3–3.0
С—Н	alkyl next to electronegative atom	CH ₃ -O, -CH ₂ -O, -CH ₂ -C <i>l</i> , CH-Br	3.2–4.0
	attached to alkyne	=C-H	1.8–3.1
	attached to alkene	=CH ₂ , =CH—	4.5–6.0
	attached to aromatic ring	⊘ −н	6.0–9.0
	aldehyde	R-C H	9.3–10.5
	alcohol	RO-H	0.5–6.0
O-H (see note	phenol	ОН ОН	4.5–7.0
below)	carboxylic acid	R-C,0	9.0–13.0
	alkyl amine	R-NH-	1.0–5.0
N–H (see note below)	aryl amine	NH ₂	3.0–6.0
	amide	R-C N-H	5.0–12.0


Note: δ values for -O-H and -N-H protons can vary depending on solvent and concentration.

7 Characteristic infra-red absorption frequencies for some selected bonds

Bond	Functional groups containing the bond	Absorption range (in wavenumbers) / cm ⁻¹	Appearance of peak (s = strong, w = weak)
C-C1	chloroalkanes	700–800	s
C-O	alcohol	970–1260	s
	ether	1000–1310	s
	ester	1050–1330	s
	carboxylic acids	1210–1440	s
C=C	aromatic	1475–1625	s
	alkenes	1635–1690	w
C=O	amides	1640–1690	s
	ketones and aldehydes	1670–1740	s
	carboxylic acids	1680–1730	s
	esters	1710–1750	s
C≡C	alkynes	2150–2250	w unless conjugated
C≡N	nitriles	2200–2250	w
C-H	alkanes, CH ₂ —H	2850–2950	s
	alkenes/arenes, =C—H	3000–3100	w
N–H	amines, amides	3300–3500	w
0-Н	carboxylic acid, RCO ₂ —H	2500–3000	s and very broad
	H-bonded alcohol/phenol, RO—H	3200–3600	s
	free alcohol, RO—H	3580–3650	s and sharp

8 The orientating effect of groups in aromatic substitution reactions

The position of the incoming group, \vec{E} , is determined by the nature of the group, G, already bonded to the ring, and not by the nature of the incoming group E.

9 Qualitative Analysis Notes [ppt. = precipitate] 9(a) Reactions of aqueous cations

cation	reaction with									
cation	NaOH(aq)	NH₃(aq)								
aluminium, A \hat{l}^{*} (aq)	white ppt. soluble in excess	white ppt. insoluble in excess								
ammonium, NH ₄ ⁺ (aq)	ammonia produced on heating	-								
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.								
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.								
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess								
copper(II), Cu ²⁺ (aq),	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution								
iron(II), Fe ²⁺ (aq)	green ppt., turning brown on contact with air insoluble in excess	green ppt., turning brown on contact with air insoluble in excess								
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess								
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess								
manganese(II), Mn ²⁺ (aq)	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt., rapidly turning brown on contact with air insoluble in excess								
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess								

9(b) Reactions of anions

anion	reaction						
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids						
chloride, Cl ⁻ (aq)	gives white ppt. with Ag*(aq) (soluble in NH ₃ (aq))						
bromide, Br ⁻ (aq)	gives pale cream ppt. with Ag*(aq) (partially soluble in NH ₃ (aq))						
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))						
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil						
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow (pale)$ brown NO_2 in air)						
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)						
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in dilute strong acids)						

9(c) Tests for gases								
gas	test and test result							
ammonia, NH ₃	turns damp red litmus paper blue							
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)							
chlorine, Cl ₂	bleaches damp litmus paper							
hydrogen, H ₂	"pops" with a lighted splint							
oxygen, O ₂	relights a glowing splint							
sulfur dioxide, SO ₂	turns aqueous acidified potassium manganate($\ensuremath{\mathrm{VII}}$) from purple to colourless							

9(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane		
chlorine, Cl ₂	greenish yellow gas	pale yellow	pale yellow		
bromine, Br ₂	reddish brown gas / liquid	orange	orange-red		
iodine, I ₂	black solid / purple gas	brown	purple		

10 The Periodic Table of Elements

Group																	
1	2											13	14	15	16	17	18
							1 H hydrogen										2 He helium
	Key						1.0										4.0
3	4			omic numb								5	6	7	8	9	10
Li	Be		ate	omic symb	ool							В	С	N	0	F	Ne
lithium 6.9	beryllium 9.0		name relative atomic mass									boron 10.8	carbon 12.0	nitrogen 14.0	oxygen 16.0	fluorine 19.0	neon 20.2
11	12		Tolat	ive atomic i	11433]						13	14	15	16	17	18
Na	Mg											Al	Si	P	S	C1	Ar
sodium	magnesium											aluminium	silicon	phosphorus	sulfur	chlorine	argon
23.0	24.3	3	4	5	6	7	8	9	10	11	12	27.0	28.1	31.0	32.1	35.5	39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 39.1	calcium 40.1	scandium 45.0	titanium 47.9	vanadium 50.9	chromium 52.0	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85.5	87.6	88.9	91.2	92.9	95.9	_	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead 207.2	bismuth	polonium	astatine	radon
132.9 87	137.3 88	89–103	178.5 104	180.9 105	183.8 106	186.2 107	190.2 108	192.2 109	195.1 110	197.0 111	200.6 112	204.4	114	209.0	116	_	
Fr	oo Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F <i>l</i>		Lv		
francium	radium	u o tii i o i u o	rutherfordium		seaborgium	bohrium	hassium		darmstadtium	_	copernicium		flerovium		livermorium		
_	_		_	_	_	_	_	_	_	_	_		_		_		
							•		•						1		
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lanthanoid	de	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
antinanoid	13	lanthanum		praseodymium		promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0	
		89	90	91	92	93 N.	94	95	96 Cro	97 Dia	98	99	100	101	102	103	
actinoids		Ac actinium	Th thorium	Pa protactinium	Uuranium	Np neptunium	Pu plutonium	Am americium	Cm curium	Bk berkelium	Cf californium	Es einsteinium	Fm fermium	Md mendelevium	No nobelium	Lr lawrencium	
		- acumum -	232.0	231.0	238.0	–	– Piuloilium		— Cullulli	–	<u> </u>		— —	—		- awiendum	
	1					1	1		1		1	I					

n.